Study of the development of tandem solar cells to achieve higher efficiencies
Abstract
Tandem solar cells are the brand-new age revolution within the photovoltaic (PV) enterprise thanks to their higher power conversion efficiency (PCE) capability as compared to single-junction solar cells, which are presently dominating, however intrinsically restrained. With the appearance of steel halide perovskite absorber substances, manufacturing extremely efficient tandem solar cells at an inexpensive price can profoundly regulate the future PV landscape. It has been formerly seen that tandem solar cells primarily based on perovskite have confirmed that they can convert mild more efficiently than stand-alone sub-cells. To reap PCEs of greater than 30%, numerous hurdles have to be addressed, and our understanding of this interesting era has to be accelerated. On this, a technique of aggregate of substances was followed and via a modified numerical technique, it was decided what preference of substances for the pinnacle and bottom sub-cell consequences in a better fee of electricity conversion efficiency (PCE). Through this study, it was discovered that the use of germanium telluride (GeTe) backside subcellular together with perovskite (MAPbI3-xClx) as pinnacle subcell can offer an excessive performance of 46.64% compared to a tandem mobile with perovskite (MAPbI3)/CIGS and perovskite (MAPbI3)/GeTe which produce decrease efficiencies. SCAPS-1D was used to evaluate and simulate the overall performance of the developed tandem cells.
Keywords
copper indium gallium selenide; interfacial engineering; optimizing techniques; perovskite/GeTe; SCAPS-ID; tandem-solar cell
Full Text:
PDFDOI: http://doi.org/10.11591/ijape.v14.i3.pp647-655
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624