A hybrid one step voltage-adjustable transformerless inverter for a one-phase grid incorporation of wind and solar power
Abstract
This paper presents a hybrid one-step voltage-adjustable transformerless inverter designed to efficiently integrate both solar photovoltaic (PV) and wind energy sources into a single-phase grid. The primary objective is to enhance power conversion efficiency while minimizing system complexity and cost. The proposed architecture combines a buck-boost DC-DC converter with a full-bridge inverter in a compact and modular design, enabling voltage regulation across a wide input range typical of hybrid renewable systems. By grounding the PV negative terminal, the system effectively eliminates leakage currents and ensures compliance with IEEE harmonic standards. The inverter operates with reduced switching losses and supports multiple operational modes tailored for variable solar and wind conditions. Simulation of a 300 W prototype demonstrates reliable performance, achieving a total harmonic distortion (THD) below 1%, validating its compatibility with grid requirements. Key contributions include the development of a unified topology for hybrid energy sources, in-depth analysis of energy storage components, and implementation of efficient modulation strategies. This work addresses significant challenges in renewable energy integration and provides a scalable solution for next-generation grid-connected hybrid power systems.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijape.v14.i4.pp951-959
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
International Journal of Applied Power Engineering (IJAPE)
p-ISSN 2252-8792, e-ISSN 2722-2624